- множество Жюлиа
- Julia set
Русско-английский словарь по радиоэлектронике. — Руссо. 2005.
Русско-английский словарь по радиоэлектронике. — Руссо. 2005.
Множество Жюлиа — Множество Жюлиа. Точнее, это не само множество (которое в данном случае состоит из несвязных точек и не может быть нарисовано), а точки из его окрестности. Чем ярче точка, тем ближе она к множеству Жюлиа и тем больше итераций ей нужно, чтобы уйти … Википедия
Множество Джулия — Множество Жюлиа Множество Жюлиа В голоморфной динамике, множество Жюлиа рационального отображения … Википедия
Множество Фату — Множество Жюлиа Множество Жюлиа В голоморфной динамике, множество Жюлиа рационального отображения … Википедия
Множество Мандельброта — Множество Мандельброта это множество таких точек c на комплексной плоскости, для которых итеративная последовательность z0=0, z … Википедия
Множество мандельброта — В математике множество Мандельброта это фрактал, определённый как множество точек на комплексной плоскости, для которых итеративная последовательность … Википедия
Жюлиа, Гастон Морис — Гастон Морис Жюлиа Gaston Maurice Julia Гастон Жюлиа (справа) с Густавом Херглотцем Дата рождения … Википедия
ЖЮЛИА ТЕОРЕМА — если а изолированная существенно особая точка аналитич. функции f(z)комплексного переменного г, то существует по крайней мере один выходящий из алуч S={z;arg(z а) = q0} такой, что в любом угле симметричном относительно этого луча, функция f(z)… … Математическая энциклопедия
Пыль Фату — Множество Жюлиа Множество Жюлиа В голоморфной динамике, множество Жюлиа рационального отображения … Википедия
Пыль фату — Множество Жюлиа Множество Жюлиа В голоморфной динамике, множество Жюлиа рационального отображения … Википедия
Фрактал — Множество Мандельброта классический образец фрактала … Википедия
Фрактальная графика — Множество Мандельброта классический образец фрактала Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре… … Википедия